Warning: SQLite3::exec(): disk I/O error in /home/admin/web/durgen1406.ru/public_html/index.php on line 71

Warning: SQLite3::querySingle(): Unable to prepare statement: 10, disk I/O error in /home/admin/web/durgen1406.ru/public_html/index.php on line 1494
Richard Brath Graph Analysis and - superligaoptom.ru
SUPERLIGAOPTOM.RU

Richard Brath Graph Analysis and Visualization


Wring more out of the data with a scientific approach to analysis Graph Analysis and Visualization brings graph theory out of the lab and into the real world. Using sophisticated methods and tools that span analysis functions, this guide shows you how to exploit graph and network analytic techniques to enable the discovery of new business insights and opportunities. Published in full color, the book describes the process of creating powerful visualizations using a rich and engaging set of examples from sports, finance, marketing, security, social media, and more. You will find practical guidance toward pattern identification and using various data sources, including Big Data, plus clear instruction on the use of software and programming. The companion website offers data sets, full code examples in Python, and links to all the tools covered in the book. Science has already reaped the benefit of network and graph theory, which has powered breakthroughs in physics, economics, genetics, and more. This book brings those proven techniques into the world of business, finance, strategy, and design, helping extract more information from data and better communicate the results to decision-makers. Study graphical examples of networks using clear and insightful visualizations Analyze specifically-curated, easy-to-use data sets from various industries Learn the software tools and programming languages that extract insights from data Code examples using the popular Python programming language There is a tremendous body of scientific work on network and graph theory, but very little of it directly applies to analyst functions outside of the core sciences – until now. Written for those seeking empirically based, systematic analysis methods and powerful tools that apply outside the lab, Graph Analysis and Visualization is a thorough, authoritative resource.

4237.09 RUR

/ / похожие

Подробнее

Gene Cheung Graph Spectral Image Processing


Graph spectral image processing is the study of imaging data from a graph frequency perspective. Modern image sensors capture a wide range of visual data including high spatial resolution/high bit-depth 2D images and videos, hyperspectral images, light field images and 3D point clouds. The field of graph signal processing – extending traditional Fourier analysis tools such as transforms and wavelets to handle data on irregular graph kernels – provides new flexible computational tools to analyze and process these varied types of imaging data. Recent methods combine graph signal processing ideas with deep neural network architectures for enhanced performances, with robustness and smaller memory requirements.<br /><br />The book is divided into two parts. The first is centered on the fundamentals of graph signal processing theories, including graph filtering, graph learning and graph neural networks. The second part details several imaging applications using graph signal processing tools, including image and video compression, 3D image compression, image restoration, point cloud processing, image segmentation and image classification, as well as the use of graph neural networks for image processing.

13968.54 RUR

/ / похожие

Подробнее

Bichot Charles-Edmond Graph Partitioning


Graph partitioning is a theoretical subject with applications in many areas, principally: numerical analysis, programs mapping onto parallel architectures, image segmentation, VLSI design. During the last 40 years, the literature has strongly increased and big improvements have been made. This book brings together the knowledge accumulated during many years to extract both theoretical foundations of graph partitioning and its main applications.

12330.04 RUR

/ / похожие

Подробнее

Dehmer Matthias Analysis of Complex Networks. From Biology to Linguistics


Mathematical problems such as graph theory problems are of increasing importance for the analysis of modelling data in biomedical research such as in systems biology, neuronal network modelling etc. This book follows a new approach of including graph theory from a mathematical perspective with specific applications of graph theory in biomedical and computational sciences. The book is written by renowned experts in the field and offers valuable background information for a wide audience.

22449.18 RUR

/ / похожие

Подробнее

Dehmer Matthias Statistical and Machine Learning Approaches for Network Analysis


Explore the multidisciplinary nature of complex networks through machine learning techniques Statistical and Machine Learning Approaches for Network Analysis provides an accessible framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for classification. By providing different approaches based on experimental data, the book uniquely sets itself apart from the current literature by exploring the application of machine learning techniques to various types of complex networks. Comprised of chapters written by internationally renowned researchers in the field of interdisciplinary network theory, the book presents current and classical methods to analyze networks statistically. Methods from machine learning, data mining, and information theory are strongly emphasized throughout. Real data sets are used to showcase the discussed methods and topics, which include: A survey of computational approaches to reconstruct and partition biological networks An introduction to complex networks—measures, statistical properties, and models Modeling for evolving biological networks The structure of an evolving random bipartite graph Density-based enumeration in structured data Hyponym extraction employing a weighted graph kernel Statistical and Machine Learning Approaches for Network Analysis is an excellent supplemental text for graduate-level, cross-disciplinary courses in applied discrete mathematics, bioinformatics, pattern recognition, and computer science. The book is also a valuable reference for researchers and practitioners in the fields of applied discrete mathematics, machine learning, data mining, and biostatistics.

10799.41 RUR

/ / похожие

Подробнее

Zhiyuan Liu Introduction to Graph Neural Networks


Graphs are useful data structures in complex real-life applications such as modeling physical systems, learning molecular fingerprints, controlling traffic networks, and recommending friends in social networks. However, these tasks require dealing with non-Euclidean graph data that contains rich relational information between elements and cannot be well handled by traditional deep learning models (e.g., convolutional neural networks (CNNs) or recurrent neural networks (RNNs)). Nodes in graphs usually contain useful feature information that cannot be well addressed in most unsupervised representation learning methods (e.g., network embedding methods). Graph neural networks (GNNs) are proposed to combine the feature information and the graph structure to learn better representations on graphs via feature propagation and aggregation. Due to its convincing performance and high interpretability, GNN has recently become a widely applied graph analysis tool. This book provides a comprehensive introduction to the basic concepts, models, and applications of graph neural networks. It starts with the introduction of the vanilla GNN model. Then several variants of the vanilla model are introduced such as graph convolutional networks, graph recurrent networks, graph attention networks, graph residual networks, and several general frameworks. Variants for different graph types and advanced training methods are also included. As for the applications of GNNs, the book categorizes them into structural, non-structural, and other scenarios, and then it introduces several typical models on solving these tasks. Finally, the closing chapters provide GNN open resources and the outlook of several future directions.

2548.21 RUR

/ / похожие

Подробнее

Группа авторов Optimal Structural Analysis


This second edition of the highly acclaimed and successful first edition, deals primarily with the analysis of structural engineering systems, with applicable methods to other types of structures. The concepts presented in the book are not only relevant to skeletal structures but can equally be used for the analysis of other systems such as hydraulic and electrical networks. The book has been substantially revised to include recent developments and applications of the algebraic graph theory and matroids.

14966.12 RUR

/ / похожие

Подробнее

Richard A Frazier Capillary Electrophoresis for Food Analysis

Falk Schreiber Analysis of Biological Networks


An introduction to biological networks and methods for their analysis Analysis of Biological Networks is the first book of its kind to provide readers with a comprehensive introduction to the structural analysis of biological networks at the interface of biology and computer science. The book begins with a brief overview of biological networks and graph theory/graph algorithms and goes on to explore: global network properties, network centralities, network motifs, network clustering, Petri nets, signal transduction and gene regulation networks, protein interaction networks, metabolic networks, phylogenetic networks, ecological networks, and correlation networks. Analysis of Biological Networks is a self-contained introduction to this important research topic, assumes no expert knowledge in computer science or biology, and is accessible to professionals and students alike. Each chapter concludes with a summary of main points and with exercises for readers to test their understanding of the material presented. Additionally, an FTP site with links to author-provided data for the book is available for deeper study. This book is suitable as a resource for researchers in computer science, biology, bioinformatics, advanced biochemistry, and the life sciences, and also serves as an ideal reference text for graduate-level courses in bioinformatics and biological research.

10884.45 RUR

/ / похожие

Подробнее

Michael Stiebitz Graph Edge Coloring


Features recent advances and new applications in graph edge coloring Reviewing recent advances in the Edge Coloring Problem, Graph Edge Coloring: Vizing's Theorem and Goldberg's Conjecture provides an overview of the current state of the science, explaining the interconnections among the results obtained from important graph theory studies. The authors introduce many new improved proofs of known results to identify and point to possible solutions for open problems in edge coloring. The book begins with an introduction to graph theory and the concept of edge coloring. Subsequent chapters explore important topics such as: Use of Tashkinov trees to obtain an asymptotic positive solution to Goldberg's conjecture Application of Vizing fans to obtain both known and new results Kierstead paths as an alternative to Vizing fans Classification problem of simple graphs Generalized edge coloring in which a color may appear more than once at a vertex This book also features first-time English translations of two groundbreaking papers written by Vadim Vizing on an estimate of the chromatic class of a p-graph and the critical graphs within a given chromatic class. Written by leading experts who have reinvigorated research in the field, Graph Edge Coloring is an excellent book for mathematics, optimization, and computer science courses at the graduate level. The book also serves as a valuable reference for researchers interested in discrete mathematics, graph theory, operations research, theoretical computer science, and combinatorial optimization.

10226.44 RUR

/ / похожие

Подробнее

Anthony Johnson Social Network Analysis with Applications


A comprehensive introduction to social network analysis that hones in on basic centrality measures, social links, subgroup analysis, data sources, and more Written by military, industry, and business professionals, this book introduces readers to social network analysis, the new and emerging topic that has recently become of significant use for industry, management, law enforcement, and military practitioners for identifying both vulnerabilities and opportunities in collaborative networked organizations. Focusing on models and methods for the analysis of organizational risk, Social Network Analysis with Applications provides easily accessible, yet comprehensive coverage of network basics, centrality measures, social link theory, subgroup analysis, relational algebra, data sources, and more. Examples of mathematical calculations and formulas for social network measures are also included. Along with practice problems and exercises, this easily accessible book covers: The basic concepts of networks, nodes, links, adjacency matrices, and graphs Mathematical calculations and exercises for centrality, the basic measures of degree, betweenness, closeness, and eigenvector centralities Graph-level measures, with a special focus on both the visual and numerical analysis of networks Matrix algebra, outlining basic concepts such as matrix addition, subtraction, multiplication, and transpose and inverse calculations in linear algebra that are useful for developing networks from relational data Meta-networks and relational algebra, social links, diffusion through networks, subgroup analysis, and more An excellent resource for practitioners in industry, management, law enforcement, and military intelligence who wish to learn and apply social network analysis to their respective fields, Social Network Analysis with Applications is also an ideal text for upper-level undergraduate and graduate level courses and workshops on the subject.

9414.66 RUR

/ / похожие

Подробнее

Christos Faloutsos Individual and Collective Graph Mining

Xiaoyu Cai Formation Control of Multi-Agent Systems. A Graph Rigidity Approach


Formation Control of Multi-Agent Systems: A Graph Rigidity Approach Marcio de Queiroz, Louisiana State University, USA Xiaoyu Cai, FARO Technologies, USA Matthew Feemster, U.S. Naval Academy, USA A comprehensive guide to formation control of multi-agent systems using rigid graph theory This book is the first to provide a comprehensive and unified treatment of the subject of graph rigidity-based formation control of multi-agent systems. Such systems are relevant to a variety of emerging engineering applications, including unmanned robotic vehicles and mobile sensor networks. Graph theory, and rigid graphs in particular, provides a natural tool for describing the multi-agent formation shape as well as the inter-agent sensing, communication, and control topology. Beginning with an introduction to rigid graph theory, the contents of the book are organized by the agent dynamic model (single integrator, double integrator, and mechanical dynamics) and by the type of formation problem (formation acquisition, formation manoeuvring, and target interception). The book presents the material in ascending level of difficulty and in a self-contained manner; thus, facilitating reader understanding. Key features: Uses the concept of graph rigidity as the basis for describing the multi-agent formation geometry and solving formation control problems. Considers different agent models and formation control problems. Control designs throughout the book progressively build upon each other. Provides a primer on rigid graph theory. Combines theory, computer simulations, and experimental results. Formation Control of Multi-Agent Systems: A Graph Rigidity Approach is targeted at researchers and graduate students in the areas of control systems and robotics. Prerequisite knowledge includes linear algebra, matrix theory, control systems, and nonlinear systems.

14285.84 RUR

/ / похожие

Подробнее

K. Thulasiraman Graphs


This adaptation of an earlier work by the authors is a graduate text and professional reference on the fundamentals of graph theory. It covers the theory of graphs, its applications to computer networks and the theory of graph algorithms. Also includes exercises and an updated bibliography.

22364.14 RUR

/ / похожие

Подробнее

BLACK GRAPH


BLACK GRAPH

899 RUR
Printbar

Printbar / / похожие

Подробнее

BLACK GRAPH


BLACK GRAPH

2199 RUR
Printbar

Printbar / / похожие

Подробнее

BLACK GRAPH


BLACK GRAPH

2099 RUR
Printbar

Printbar / / похожие

Подробнее

BLACK GRAPH


BLACK GRAPH

1199 RUR
Printbar

Printbar / / похожие

Подробнее

BLACK GRAPH


BLACK GRAPH

1199 RUR
Printbar

Printbar / / похожие

Подробнее

BLACK GRAPH


BLACK GRAPH

2199 RUR
Printbar

Printbar / / похожие

Подробнее
superligaoptom.ru — Каталог цен и описаний на компьютерную и бытовую технику, товары для офис и дома, электронику, товаров для сада и дачи. Мы занимаемся поиском лучших цен в интернет магазинах по всей России, знаем где купить Richard Brath Graph Analysis and по оптимальной цене в онлайн-магазинах. На нашем сайте superligaoptom.ru предоставлена вся необходимая информация для правильной покупки Richard Brath Graph Analysis and — фотографии товаров, отзывы пользователей, поиск по модели и производителю, наименованию или модели, инструкции по эксплуатации, а так же экспертные обзоры, сайты предлагающие покупу онлайн с доставкой заказа в ваш город.